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Recognition of genes in DNA sequénce with ambiguities

Mark Borodovsky and James McIninch
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Institute of Molecular Genetics, Moscow, Russia

The search for genes in a newly sequenced DNA is a well known problem. Among other factors, the gene-searching
process is hampered by a number of ambiguities which may remain unresolved experimentally for a long time. A computer
method that is able to predict genes in a DNA sequence containing ambiguities has been developed, based on the non-
homogeneous Markov chain technique. The reliability of the method has been tested using a set of sequences generated by
a Monte-Carlo procedure and a set of 425 E. coli sequences with ambiguities introduced artificially.

Introduction

Usually, molecular biologists start analyzing DNA texts coming from sequencing long before these texts
are ultimately refined and contain no ambiguities or insertions/deletions.

A computer method for prediction of coding regions might be useful in this situation, since it would
provide additional information for&esolving ambiguities, show insertions/deletions and frameshifts, and
allow one to start investigating genes and translated protein sequences immediately. Such a method should
be robust to the presence of ambiguities and insertions/deletions and should work properly without any
information about positions of start and stop signals which may be easily masked by ambiguities.

Various methods for recognition of coding regions have been considered since the beginning of the
sequencing era. They can be divided into two main groups: “search by content” and “search by signal”.
The latter group looks for specific boundary sites of coding regions, and from the formal point of view this
group is close to other methods of recognition of short functional sites (referenced in Bishop and Rawlings,
1987; Gelfand, 1992). The search by content methods perform statistical analysis of longer DNA fragments
that are suspected to contain protein-coding regions. Several approaches have already been exploited for
this purpose (Shepherd, 1981; Shulman et al., 1981; Fickett, 1982; Staden and McLachlan, 1984; Staden,
1984; Gribskov et al., 1984; Konopka and Owens, 1990).

Nevertheless, the problem posed by analysis of raw sequences was not directly addressed yet. here
we present a generalization of our previously published “search by content” method based on the non-
homogeneous Markov chains technique (Borodovsky et al., 1986a, b). In the following paragraphs we
introduce the Markov chain models for coding and non-coding regions of DNA written in both 4-letter and
15-letter “alphabets”. We obtain actual Markov chain parameters by statistical processing of the training
sets consisting of E. coli coding and non-coding sequences. Then we define the formula for calculating the
probability of “coding” for a given' DNA fragment (like the Fickett’s TestCode coding potential (1982), .
but the characteristics presented here has a definite mathematical sense).

Finally we evaluate the reliability of the method in two ways: first, by using synthetic coding and non-
coding DNA sequences; and second, by using a control set of 425 E. coli sequences.
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Markov Chain Models

As it is well known, there are specific correlations between adjacent nucleotides in chromosomal DNA
sequences. It means that if we have a nucleotide of type A in an arbitrarily chosen position, then we can
find a nucleotide of type B in the next position with a frequency that might differ from the frequency of
nucleotide B in the entire set of DNA sequences of this species.

That is why the Markov chain model of the DNA sequence is introduced. The Markov chain is a mathe-
matical object with, say, K states. The necessary parameters of the Markov chain are: initial probabilities
of states: Py;, i = 1,..., K; and probabilities of transitions between states: P;;,4,j = 1,... , K. According
to this model we treat a DNA sequence as a realization of the process of transition between states (Markov
chain dynamics).

Several attempts have been made to establish the numerical parameters of an ordinary (homogeneous)
Markov chain model so that it would best describe the natural DNA. Finally, the ultimate result was
not obtained. It was found that the DNA composition and features of nucleotide correlation vary among
different species.

One of the most important results is that the model of DNA protein-coding region does not belong to
the class of homogeneous Markov chains, but to the class of periodic non-homogeneous Markov chains
(Borodovsky et al., 1986b). This class of non-homogeneous Markov chain models is described by three vec-
tors of initial probabilities: P}, P?, P3; and three matrices P!, P2, P? that contain transition probabilities
Pl.l” PI?” P’?’ z j = 1?"' ,4

For what follows it is necessary to determine the appropriate Markov model for non-coding DNA as well.
The homogeneous Markov chain model was found quite appropriate for this purpose.

The numerical parameters, for the first order Markov chain model of a nucleotide sequence are defined
according to statistics of mono- and dinucleotides taken from the training sets of DNA sequences taken
from a given species.

In the case of a homogeneous Markov chain (training set of non-coding regions) the values of the initial
probabilities are accepted to be equal to the normalized frequencies of the mononucleotides. The values of
the elements in the transition matrices P;; = P(j|i) are assumed to equal the ratio N(ij)/N (i) where i, j
stand for types of nucleotides, N(%) is the couny of the nucleotide i, N(ij) is the count of the dinucleotide 5.
These results follow from the principle of ma¥itnum likelihood if one uses the Markov process realization for
determining of the best-fit Markov chain model parameters. In the training set of coding regions statistics
N (i), and N(Zj) are calculated by separate counting the frequencies of mono- and dinucleotides in each of
three “frames”. It means that mononucleotides are counted separately in each position of codon and the
dinucleotides also are split into three groups according to the codon position occupied by the left nucleotide.

The fundamental formula from Markov chain theory defines the probability that a given sequence of

states (nucleotides) 71,%2,... ,%¢ can be observed in the realization of the Markov chain process starting
from a given position in a sequence as
P(iy,da,. .. ,ik) = Po(i1) P(i2]i1) P(isliz) . . . P(ik)ix=1)- (1)

DNA sequences in the training sets consist of four nucleotide symbols: T, C, A, and G (denoted here
by 1,2,3,4). Our next step is to generalize formula (1) for the case when other types of nucleotides,
representing ambiguities, are present in the fragment ¢;,4,,... ,7;. Additional types of symbols are: Y (C
or T, R(AorG),K(GorT),S(GorC),W(AorT),H(AoxCorT),B(GorTorC),V(GorCor
A),D(GorAorT),N (TorCorAorG).

In what follows it is convenient to refer to a generalized symbol X (z; or x4 or z3 or z4), that means one
of the ambiguity types listed above. |X| denotes the number of nucleotides belonging to the generalized
symbol X . The transition probabilities for the Markov chain with 15 generalized types of nucleotides are
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defined by the following formulas:

P(Xlix) = Y P(zjlix),

j
P(i|X) = ZP(iklzj)P(zj)’
P(Y|X) = EP(y,lX),

where X and Y are two generalized symbols.

Formula (1) can be used now for a sequence that contains all 15 nucleotide symbols (including ambiguity
symbols). A similar formula can be simply written for a non-homogeneous Markov chain as well.

The numerical values of the initial probabilities as well as values of transition elements of homogeneous
and non-homogeneous Markov chain matrices for E. coli DNA were determined in (Borodovsky et al.,
1986b), where these data are considered in detail.

The Bayesian approach to gene recognition and its accuracy

Markov models for coding and non-coding regions of DNA described above supply us with, speaking
metaphorically, statistical images of DNA sequences with specific functional meaning.

The problem of prediction of a protein-coding region within a newly sequenced DNA may be posed as a
problem of search for a fragment (with a priori unknown boundaries) which would be close to a fragment
generated by the Markov model of the coding region in a sense of some appropriate statistical measure.

In practice the problem is simplified by considering the set of fragments of a given length which cover the
entire sequence. The fragments are analyzed one at a time, using the so called moving window technique.

Denote a nucleotide sequence fragment j,, jo, ... , j, by F. It is convenient to let n be a multiple of 3. We
need several formulas for computation of auxiliary statistics based of the already defined Markov models.
First the conditional probability that F belongs to a non-coding region is computed as

P(F|NON) = Po(Jl)P(J2|f1) -P(jnlfn-1)- (2)

The computation of the probability P(F|COD) that the fragment F belongs to a coding region is slightly
more complicated. Actually, we can split this event into three mutually exclusive cases with the first
nucleotide of the fragment F' occupying the first, the second or the third position of a codon. Formula of
the same type as (2) is applied in each case separately.

P(F|COD") = Py (j1)P' (42li1) P*(jals2) P* (jalis) - - - P(dnlin-1),
P(F|COD?) = P¢(j1)P%(j21i1)P*(jsliz) P' (jaljs) - - - PP(inlin-1),
P(F|COD?®) = P3(j1) P?(j2lj1) P (jali2) P*(jalja) - . . P* (Jnlin-1)- (3)
The sum of the components P(F|COD'), P(F|COD?), and P(F|COD?) gives us the value of the probability
P(F|COD).
Now we are close to our main objective which is to determine the value P(COD|F) (or P(NON|F),
what is the same, since the sum P(COD|F) + P(NON|F) is presumably 1). The designation P(COD|F)

(or P(NON|F)) stands for a posteriori probabilities of the event that the fragment F belongs to a coding
(resp., non-coding) region given the sequence of F.




164

Table 1 Table 2
The percentage of false negatives (coding predicted to be The percentage of false positives (non-coding predicted to
non-coding) in the artificial sample with the threshold H = be coding) in the artificial sample with the threshold H =
0.75. 0.75.
48 96 48 96
0 19.4% 7.7% 0 15.5% 6.2%
10 24.1% 11.9% 10 16.5% 6.9%

Three components of the value P(COD|F) can be computed by the Bayes formula (m =1,2,3)
P(F|COD™)
y-:_, P(F|ICODY)P(COD?) + P(F|NON)P(NON)’

The designations P(COD*) and P(NON) stand here for the so called a priori probabilities of the events
COD', i = 1,2,3 and NON. The events COD’ happen when an arbitrary (unknown) fragment F is
located w1thm a coding DNA (with specified position of the first nucleotide in the codon), while the event
NON happens if F is within the non-coding part. The simplest assumption is that P(NON) = 1/2 and
P(COD*) =1/6fori=1,2,3. .

Formula (4) gives a basic idea for the algorithm that would determine the values P(COD’|F), j = 1,2,3
for any finite fragment of a DNA text.

The accuracy of the méthod has been tested using artificial nucleotide sequences. The Markov chain
sequence generator has been designed for producing 15-letter alphabet sequences of coding and non-coding
types (depending on whether the homogeneous or non-homogeneous Markov chain model has been used).
The percentage of ambiguities could be varied. We have considered 0% and 10% ambiguity levels. Then the
artificial sequence produced by a generator. was divided into non-overlapping fragments — windows. Two
different window sizes (48 or 96 nucleotides) were considered. Prediction of the protein coding capacity
has been done for each window fragment according to the value P(COD|F) for this fragment. A threshold
value H was established for the decision making. It means that if P(COD|F) > H, F is predicted to belong
to a coding region, while if P(COD|F) < H, F is predicted to be non-coding.

The values of the type I error of the coding région predlct\on (coding recognized as non-coding) for the
threshold value 0.75 are shown in Table 1.

Table 2 presents the type I error levels for the non-coding region prediction (non-coding recognized as
coding) when decision making threshold again equals 0.75.

It is seen ‘that prediction of sequences with ambiguities produces worse results and that the error of
prediction of the non-coding regions is less sensitive to the presence of ambiguities. The enlargement of the
window size allows us to achieve better reliability, a fact that could be expected, since a longer sequence
fragment contains more information about the functional type of the sequence.

P(COD™|F) = 4)

Evaluation of the method accuracy using the control set of E. coli DNA Sequences

A sample consisting of 425 E. coli sequences taken from EMBL Release 25 was used in order to estimate
the method reliability in the case of natural DNA sequences. The levels of the type I errors made by
predictions for coding region are presented in Table 3, while those for non-coding regions, in Table 4 (H =
0.75). The histograms are presented on Fig. 1.

Figs. 2 and 3 present ‘predictions made for a recently sequenced fragment of E. coli DNA, provided
by F. Blattner (University of Wisconsin). The sequence region contains three unidentified open reading
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Fig. 1. Histograms of the probability function for two-sets of 12,914 coding and 5,628 non-coding 48-nucleotide fragments
of E. coli DNA. Solid line — the number of coding fragments which produced the given value of the probability function,
dashed lines — same for non-coding fragments. (A) No ambiguous nucleotides. (B) The data with 10% of artificially

introduced ambiguous nucleotides.
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Fig. 2. Probability values as a function of the moving window position for a E. coli DNA. First order Markov chain model
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Table 3

The percentage of false negatives (coding predicted to be
non-coding) in the E. coli sample with the threshold H =
0.75.

Table 4

The percentage of false negatives (coding predicted to be
non-coding) in the E. coli sample with the threshold H =
0.75.

48 96 48 96
0 24.9% 17.4% 0 32.8% 28.0%
10 27.5% 19.8% 10 32.4% 27.4%

frames: from position 422 to position 1846 in the second frame, from 1944 to 2696 in the third frame and
from 2713 to 3312 in the first frame.

The transition to the better quality of the gene regions identification can be observed when the percentage
of ambiguities decreases and the window length increases.

Discussion

The numerical results obtained in the testing of the control set of sequences generated by the Markov
chain generator indicate that sufficient accuracy can be achieved even in the case of a window of 48
nucleotides wide (Tables 1 and 2).

The reliability of the prediction drops insignificantly (in a 5% range) if the relative number of ambiguities
does not exceed 10%. Note that rough DN A sequences that come from an experiment usually contain 1-3%
of ambiguities.

The results from the experiment with artificial sequences can be considered as on optimistic estimate
of the real accuracy of the method. More realistic estimate of the method accuracy is determined by
application of the method to natural DNA sequences (Tables 3 and 4). Here one can see that the false
negative error rate (coding as non-coding) increases by 2-8%, and the false positive error rate (non-coding
as coding) increases by 18-20%.

Also, we have observed two phenomenasthat should be explained. The first one is that the prediction
error that has been found for synthetic sequences for the threshold 0.75 is not close to the value 0.75. That
is caused by the fact that the Bayes probability 0.75 determined for a fragment does not correspond to
the portion of all fragments under consideration having the value of the Bayes function less than 0.75. The
same statement is valid for all other values of the Bayes probability if one is comparing any local Bayes
probability taken as a threshold value with the total amount of the prediction errors.

Another question will arise if one notices that the false positive error defined in the presence of ambiguities
happens to be smaller than the false positive error rate determined for the sequence that does not have
ambiguities (Table 4). The explanation is that the distribution of the Bayes probability on the set of
the non-coding fragments has a specific shape. As soon as the percentage of ambiguities increases, the
distribution begins to shrink to the middle of the region (dashed lines on Fig. 1A and 1B), so the portion
of the fragments with the Bayes probability exceeding 0.75 decreases instead of expected increasing.

As a whole, the present model demonstrates that a 32-codon window is better for practical purposes
than a 16-codon window. The former will give at least 80.2% reliability for prediction of coding and 72.6%
reliability for prediction of non-coding (for isolated DNA fragments with the ambiguity level 10%). Note
that the use of isolated fragments for estimates of the error rate produces a “pessimistic” judgment about
the reliability of the method. In practice, when the results of the analysis of the adjacent DNA fragments
are combined together in the process of the decision making, the random fluctuations are suppressed and
the final error rate decreases.
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Further generalizations of the method for the case of higher order Markov chain models and simultaneous
analysis of two complementary DNA strands are presented in (Borodovsky and McIninch, 1993ab).
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